
a

ussia

PHYSICAL REVIEW E, VOLUME 65, 036140
Towards a variational principle for motivated vehicle motion
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We deal with the problem of deriving the microscopic equations governing individual car motion based on
assumptions about the strategy of driver behavior. We presume the driver behavior to be a result of a certain
compromise between the will to move at a speed that is comfortable for him under the surrounding external
conditions, comprising the physical state of the road, the weather conditions, etc., and the necessity to keep a
safe headway distance between the cars in front of him. Such a strategy implies that a driver can compare the
possible ways of further motion and so choose the best one. To describe the driver preferences, we introduce
the priority functional whose extremals specify the driver choice. For simplicity we consider a single-lane road.
In this case solving the corresponding equations for the extremals we find the relationship between the current
acceleration, velocity, and position of the car. As a special case we get a certain generalization of the optimal
velocity model similar to the ‘‘intelligent driver model’’ proposed by Treiber and Helbing.
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I. INTRODUCTION

The fundamentals of traffic flow dynamics are far fro
being well established because up to now, what the spe
form of the microscopic equations governing the individu
car motion should be has not been clear. The problem is
the car motion is controlled by the motivated driver behav
rather than obeying Newton’s laws. In fact, the behavior o
driver is due to a certain compromise between the will
move at a speed that is comfortable for him and attained
an empty road on one hand, and the need to avoid pos
traffic accidents on the other. So, comparing car ensem
with physical systems, it is not obvious beforehand that th
is a direct relationship between the acceleration of a gi
car and the positions and the velocities of other cars as is
case for physical particles. In addition, the linear superp
tion typical in the interaction of physical particles is not se
evident in the case of vehicle interaction.

By contrast, on macroscopic scales the car ensembles
hibit a wide class of critical and self-organization phenome
widely met in physical systems~for a review see Refs
@1–4#!. It should be pointed out that fish and bird swarm
colonies of bacteria, pedestrians, etc. also demonstrate s
lar cooperative motion~for a review see Ref.@4# and also
Refs. @5–7#!. So the cooperative behavior of many-partic
systems, including social and biological ones, seems to b
a more general nature than the mechanical laws, and d
mining what microscopic regularities are responsible for
cooperative phenomena in the general case is a challen
problem. Traffic dynamics is widely studied in this conte
also due to the great potential for industrial applications.

*Electronic address: ialub@fpl.gpi.ru
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The currently adopted approach to specifying the mic
scopic governing equations of the individual car motion
the so-called social force model, or generalized force mo
Its detailed motivation and description can be found in Re
@8–10#; here we only touch on the basic ideas. At each m
ment t of time, a given drivera increases or decreases th
speedva of his car or keeps its value unchanged depend
on the road conditions and the arrangement of the neigh
ing cars:

dva

dt
5 f a~va!1 (

a8Þa

f aa8~xa ,vauxa8 ,va8!. ~1.1!

Here the termf a(va), typically of the form

f a~va!5
va

02va

ta
,

describes the driver tendency to move on the empty road
certain fixed speedva

0 depending on the physical state of th
road, weather conditions, legal traffic regulations, etc. T
relaxation timeta characterizes the acceleration capability
the given car as well as the delay in the driver control o
the headway. The termf aa8(xa ,vauxa8 ,va8) describes the
interaction of cara with cara8 (a8Þa), which is due to the
necessity for drivera to keep a certain safe headway di
tance between the cars. The forcef aa8(xa ,vauxa8 ,va8) is
assumed to depend directly only on the velocitiesva , va8
and the positionsxa , xa8 of this car pair, and being of a
nonphysical nature does not meet Newton’s third law, i.e.
the general casef aa8Þ2 f a8a . Reference@11# presents and
discusses possible generalizedAnsätze for the dependence
f aa8(xa ,vauxa8 ,va8).
©2002 The American Physical Society40-1
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The special cases of this model have their own names
particular, for a single-lane road, when all the cars can
ordered according to their position on the road in the
motion direction,

•••,xa22,xa21,xa,xa11,xa12,•••,

the interaction solely of the nearest neighboring carsa and
a11 is taken into account, i.e., isf aa8Þ0 for a85a11
and, may be,a85a21 only. For this case Bandoet al.
@12,13# proposed the optimal velocity model that describ
the individual car motion as

dva

dt
5

1

t
@qopt~xa112xa!2va#, ~1.2!

whereqopt(D) is the steady-state velocity~the optimal ve-
locity! chosen by drivers for the given headway distanceD
5xa112xa between the cars. This model and its modific
tion were successfully used to explain the properties of
‘‘stop-and-go’’ waves that develop in dense traffic on sing
lane roads~see, e.g., Refs.@14–30#!.

However, on multilane highways the behavior of traf
flow becomes sufficiently complex because of the strong c
relations in the car motion in different lanes~for a review see
Refs. @1–4#!. In this case it is not sufficient to confine th
consideration only to the interaction between the nea
neighboring cars and one has to specify several indepen
components of the social forces$ f aa8(xa ,vauxa8 ,va8)%. As
a result, the number of essential fitting parameters ente
the social forces increases substantially. A possible wa
overcome this problem is to formulate a mathematical p
ciple characterizing the strategy of driver behavior in ter
of a certain functional quantifying the objectives pursued
drivers. Constructing this functional may be, at the pheno
enological level, made easier by the clear physical mean
of the driver’s objectives. Then, using standard techniq
one will derive the required governing equations. This wo
presents our first steps towards such an approach. It sh
be noted that the derivation of microscopic governing eq
tions for systems with motivated behavior based on a cer
‘‘optimal self-organization’’ principle was discussed in Ref
@4,7,31–33#. The main idea of this approach is the assum
tion that individuals try to minimize the interaction streng
or, in other words, to optimize their own success and
minimize the efforts required for this.

Our approach is related to the concepts of mathema
economics, namely, to the concepts of preferences and u
~see, e.g., Ref.@34#!. We suppose that at each momentt0 of
time, a driver plans his motion in a certain way in order, fir
to move as fast as possible and, second, to prevent tr
accidents. In particular, in the previous paper@35#, using this
idea we developed a model explaining in a simple way
experimentally observed sequence of the first-order ph
transitions from the ‘‘free flow’’ to the jam phase through th
‘‘synchronized mode’’@36–38#. Such a strategy actually im
plies that a driver evaluates any possible path of his furt
motion, $x(t), t.t0%, with respect to its preferability. In
other words, a driver can compare any two paths$x1(t),
03614
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t.t0% and$x2(t), t.t0% and decide which of them is mor
preferable, for example,x1(t). The latter relation will be
designated asx1(t)sx2(t). Obviously, the given relation ex
hibits transitivity, i.e., ifx1(t)sx2(t) andx2(t)sx3(t) then
x1(t)sx3(t). In this case we may seek a priority function
L$x% meeting the conditionL$x1%.L$x2% when and only
whenx1sx2. Finally the driver chooses the best pathxopt(t)
of his further motion maximizing the priority functiona
L$x%. So its extremals have to satisfy the desired mic
scopic governing equation of individual car motion. It shou
be noted that the chosen pathxopt(t) of the planned motion
specifies the acceleration at the current time moment0
rather than the real trajectoryx(t) of the car motion becaus
at the next timet.t0 the driver again plans his motion in th
same way, introducing the corrections caused by change
the surroundings. The same concerns the car velocity an
acceleration. Therefore to avoid possible misunderstand
we will designate the real velocity and acceleration of t
car asv(t) and a(t), whereas the values corresponding
the optimal xopt(t) will be labeled by $n(t), t.t0% and
$Ã(t), t.t0%, respectively.

In this way the problem of specifying many independe
components of the social forces is solved by constructing
priority functional describing the driver compromise b
tween the will to move as fast as the physical state of
road allows and the necessity to avoid possible traffic a
dents. So to obtain the priority functional we may apply ge
eral assumptions about driver behavior.

II. VARIATIONAL PRINCIPLE FOR THE INDIVIDUAL
CAR MOTION

First we should determine the collection of phase va
ables characterizing the quality of a given car motion. W
note that for the driver under consideration the neighbor
car arrangement and its evolution should be regarded
given beforehand. Indeed, it cannot be directly controlled
him and so has to be treated as an external condition.
mulating this problem we actually assume the existence
certain collection of variablestaken at the current time mo
ment t that completely quantify the priority measure of th
car motion at the same time. Adopting the latter assumpt
we may construct the priority functionalL$x% in terms of a
certain integral of a functionF of the phase variables with
respect to time.

Using conventional driver experience, we will charact
ize the individual car motion at each time momentt by its
position on the roadx(t), the velocityv(t), and the accel-
erationa(t). For a multilane highway, for example, the po
sition of a car should also bear information about the la
occupied by the car, but this problem will be consider
elsewhere and in the present paper we confine our cons
ation to a single-lane road only. Due to this property, a ca
distinct from a physical particle because the motion of
latter is completely determined by its current position a
velocity. The variablesx(t), v(t), anda(t), however, exhibit
different behavior. The coordinatex(t) and the velocityv(t)
of the car vary continuously, i.e., the driver cannot chan
them immediately. In contrast, the accelerationa(t) may ex-
0-2
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hibit sharp jumps because it is the acceleration that is c
trolled directly by the driver without significant delay. I
such an analysis it is quite reasonable to ignore the s
physiological delay in the driver’s behavior to changes in
surroundings, allowing sharp jumps in the dependencea(t).
Therefore, planning his further path of motion the driver
gards the positionx0ªx(t0) and the velocityv0ªv(t0) of
the car at the current moment of timet0 as the initial data.

Now let us write the general form of the priority func
tional L$x% for a trial path$x(t), t.t0% of the further mo-
tion,

L$x%52E
t0

`

dt expS 2
x2x0

l
DF~ t,x,n,Ã!, ~2.1!

whereF(t,x,n,Ã) is the density of the path priority mea
sure,nªdx/dt andÃªd2x/dt2, and the exponential cofac
tor reflects the fact that drivers can monitor the traffic flo
state and so plan the motion only inside a certain region
length l in front of them. Under normal conditions this re
gion should enable a driver to govern his motion effective
for example, to decelerate in advance, avoiding a poss
accident. Therefore, its sizel has to meet the inequalit
l * v̄t, wherev̄ is the characteristic vehicle velocity in th
current traffic flow and the timet specifies the acceleration
deceleration capability of the given car. In what follows w
will assume this inequality to hold. Besides, in express
~2.1! the leading minus has been chosen so as to reduce
problem of finding the maximum of the functionalL$x% to
that of determining the minimum of integral~2.1!, as is the
typical case in physical theories. The direct dependenc
the functionF(t,x,n,Ã) on time t reflects the effect of the
surroundings, i.e., the physical road state and the neigh
ing car arrangement, on the driver planning.

According to the adopted assumption, the driver choo
the pathxopt(t) of further motion that maximizes the func
tional L(t,x,n,Ã), and at the current timet0 together with
other all trial paths$x(t)% meets the conditions

x~ t0!5x0 , n~ t0!5v0 . ~2.2!

Besides, the present paper analyzes car motion in traffic fl
i.e., it does not consider any means by which a fixed car
leave the traffic flow, for example, to stop. So we assume
all the trial paths exhibit bounded variations, i.e., there
constantsCx

l , Cx
u , Cn , andCÃ such that

Cx
l ~ t2t0!,x~ t !,Cx

u~ t2t0!,

n~ t !,Cn , uÃ~ t !u,CÃ . ~2.3!

Then, using the standard technique, we get the gover
equation for the extremals of the priority functionalL$x%,
following from the conditiondL$x%50 at x(t)5xopt(t),
03614
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dt2
H expF2

x

l
GF~ t,x,n,Ã!

]Ã J 2
d

dt H expF2
x

l
G]F~ t,x,n,Ã!

]n J
1

]

]x H expF2
x

l
GF~ t,x,n,Ã!J 50. ~2.4!

By virtue of Eq. ~2.3! the function F(t,x,n,Ã) exhibits
bounded variations, which enables us to integrate Eq.~2.4!
twice with respect to timet, reducing it to the following:

]F„t,x~ t !,n~ t !,Ã~ t !…

]Ã~ t !

52E
t

`

dt8expF2
x~ t8!2x~ t !

l
G

3
]F„t8,x~ t8!,n~ t8!,Ã~ t8!…

]n~ t8!
2E

t

`

dt8E
t8

`

dt9
]

]x~ t9!

3H expF2
x~ t9!2x~ t !

l
GF„t9,x~ t9!,n~ t9!,Ã~ t9!…J .

~2.5!

Equation~2.5! relates the planned accelerationÃ to the car
position x and velocityn. Subjecting this equation to th
initial conditions ~2.2!, we can find the optimal path
xopt(tux0 ,v0) depending on the initial car positionx0 and
velocity v0. Then differentiatingxopt(tux0 ,v0) twice with re-
spect tot and settingt5t0, we will get the desired relation
ship between the real current positionx05x(t0) and the ve-
locity v05v(t0) of the car with the accelerationa(t0) that
the driver elects under these conditions. In other words,
expression obtained in such a way, i.e.,

a~ t0!5 lim
t→t010

]2xopt~ tux0 ,v0!

]t2
, ~2.6!

gives us the microscopic governing equation for the in
vidual car motion. In addition, it should be noted that E
~2.4! is of fourth order, as it must be, because a trial path
fixed in part by the position and the velocity at the initial a
terminal points. However, in the case under consideration
characteristics of the terminal point are replaced by con
tions ~2.3!, allowing us to reduce the order.

Now let us demonstrate the proposed approach analy
a simple example.

III. THE GENERALIZED OPTIMAL VELOCITY MODEL

In constructing the priority functional we assumed that
the steady-state traffic flow a driver prefers to move a
certain speedqopt(t,x) depending on the surroundings an
conditions given beforehand. Moreoever, we consider
motion without acceleration to be the best way of drivin
Therefore, we adopt the following ansatz:

F~ t,x,v,a!5
1

2
@v2qopt~ t,x!#21

1

2
t2a2, ~3.1!
0-3
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where the time scalet characterizes the acceleration cap
bility of the given car. The driver monitoring the car arrang
ment in front of him can predict the situation developme
which is described in terms of the linear dependence of
optimal velocityqopt(t,x) on time t and distancex,

qopt~ t,x!5qopt
0 F11« t

t2t0

t
1«x

x2x0

l
G , ~3.2!

whereqopt
0 5qopt(t0 ,x0) and « t , «x are constants regarde

here as small parameters of the same order. In addition
differencev(t)/qopt

0 21 is also assumed to be of the order
« t;«x . We have adopted the linear dependence ofqopt(t,x)
on t and x because it seems quite reasonable that a dr
uses the linear approximation in estimating the position
the cars in front of him.

Substituting expressions~3.1! and~3.2! into formula~2.5!
and truncating all the terms whose orders exceed« t;«x

;(v(t)/qopt
0 21) we get

t2Ã~ t !1E
t

`

dt8expF2
qopt

0 ~ t82t !

l
G @n~ t8!2qopt

0 #

5
l

tqopt
0 ~« tl 1«xtqopt

0 !F11
qopt

0 ~ t2t0!

l
G . ~3.3!

Multiplying Eq. ~3.3! by the factor exp(2qopt
0 t/l ) and dif-

ferentiating the obtained result with respect tot, we reduce
Eq. ~3.3! to the following for t.t0:

t2
d2n

dt2
2st

dn

dt
2n52qopt

0 F11~« t1s«x!
~ t2t0!

t G ,
~3.4!

where we have introduced the parameter

s5
tqopt

0

l
&1,

the estimate of which results from the assumption adop
about the value ofl . The desired solution of Eq.~3.4! should
meet the initial conditions~2.2! and situational conditions
~2.3!, which, within ansatz~3.2!, convert to the requiremen
that dependencen(t) not exhibit exponential growth. In this
way we get

n~ t !5v0expF2k
~ t2t0!

t G1qopt
0 H @12s~« t1s«x!#

3S 12expF2k
~ t2t0!

t G D1~« t1s«x!
~ t2t0!

t J ,

~3.5!

where we have introduced the constant

k5S 1

2
s1A1

4
s211D 21

&1.
03614
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Substituting expression~3.5! into formula ~2.6!, we obtain
the desired microscopic governing equation for the in
vidual car motion:

dv
dt

52
1

t
k$v2qopt

0 @11k~« t1s«x!#%, ~3.6!

where we have omitted the subscript 0 in the accelera
and velocity terms, implying that these values correspond
the current time moment. In particular, let the optimal velo
ity qopt(t,x)5qopt(D) be specified entirely by the headwa
distanceD5xa112xa between the given cara and the near-
est onea11 in front of it. Then within the linear approxi-
mation of situation development, the driver of cara can
anticipate that the headway distance will change in time

D~ t !5D~ t0!1@va11~ t0!2va~ t0!#~ t2t0!.

This expression together with the dependenceqopt(D) en-
ables us to calculate the specific value of the constant« t and
then to rewrite formula~3.6! as

dv
dt

52
1

t
kFv2qopt~D!2ktdv

dqopt~D!

dD G , ~3.7!

where we have introduced the relative velocitydv5va11
2va of the cara11 with respect to the given cara and
omitted the argumentt0, assuming all the values to be take
at the current moment of time.

It should be noted that the expression obtained~3.7! is
similar to the phenomenological dependenceqopt(D,dv)
generalizing the standard optimal velocity model~1.2!, the
‘‘intelligent driver model’’ proposed by Treiber and Helbin
@39# ~see also Ref.@40#!.

IV. CONCLUSION

To conclude the present paper, we review its key poin
We deal with the problem of deriving microscopic equ

tions governing the motion of individual vehicles. The cu
rently adopted approaches similar to the social force mo
relate, in the spirit of Newton’s laws, the acceleration o
given car to the position and velocities of the neighbori
cars. In order to apply such models to the analysis of tra
dynamics, one has to specify all the essential componen
the corresponding effective forces acting between the c
However, when the vehicle interaction becomes sufficien
complex, as is the case, for example, for dense traffic
multilane highways, such an approach meets the problem
large numbers of fitting parameters.

The present paper proposes a possible way to avoid
aforementioned difficulty. The main idea is to describe at
first step the strategy of the driver behavior determined
the compromise between the driver’s will to move as fast
possible on the given road, on one hand, and the necess
keep a safe headway distance and not to interfere with
moving in neighboring lanes, on the other hand. This
sumption actually implies that a driver can compare vario
0-4
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ways to proceed with respect to their relative advantages
choose the best~optimal! one at each time moment. Th
choice gives the relationship between the acceleration of
car under consideration and the arrangement of neighbo
cars.

Following the concepts of mathematical economics,
have introduced a priority functional in order to quantify t
driver choice. The extremals of this priority functional d
scribe the optimal strategy by which the driver may proce
In the present paper we have considered traffic flow o
single-lane road, constructed in this case the general form
the priority functional, and derived the equations for its e
tremals corresponding to car motion with traffic flow. Th
latter means that here we do not analyze the paths by w
ol

e
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a car enters or leaves traffic flow on the given road beca
this question deserves individual investigation.

By way of example, we have considered a special c
leading to an expression relating the current acceleration
fixed car to the headway distance between this car and
one in front of it as well as their relative velocities. Th
equation obtained turns out to be similar to the ‘‘intellige
driver model’’ by Treiber and Helbing.
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