PHYSICAL REVIEW E, VOLUME 65, 036140
Towards a variational principle for motivated vehicle motion
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We deal with the problem of deriving the microscopic equations governing individual car motion based on
assumptions about the strategy of driver behavior. We presume the driver behavior to be a result of a certain
compromise between the will to move at a speed that is comfortable for him under the surrounding external
conditions, comprising the physical state of the road, the weather conditions, etc., and the necessity to keep a
safe headway distance between the cars in front of him. Such a strategy implies that a driver can compare the
possible ways of further motion and so choose the best one. To describe the driver preferences, we introduce
the priority functional whose extremals specify the driver choice. For simplicity we consider a single-lane road.
In this case solving the corresponding equations for the extremals we find the relationship between the current
acceleration, velocity, and position of the car. As a special case we get a certain generalization of the optimal
velocity model similar to the “intelligent driver model” proposed by Treiber and Helbing.
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[. INTRODUCTION The currently adopted approach to specifying the micro-
scopic governing equations of the individual car motion is
The fundamentals of traffic flow dynamics are far from the so-called social force model, or generalized force model.
being well established because up to now, what the specifiis detailed motivation and description can be found in Refs.
form of the microscopic equations governing the individual[8—210]; here we only touch on the basic ideas. At each mo-
car motion should be has not been clear. The problem is thapentt of time, a given drivera increases or decreases the
the car motion is controlled by the motivated driver behaviorsPeedv,, of his car or keeps its value unchanged depending
rather than obeying Newton’s laws. In fact, the behavior of 20N the road conditions and the arrangement of the neighbor-
driver is due to a certain compromise between the will to!Ng cars:
move at a speed that is comfortable for him and attained on g
an empty road on one hand, and the need to avoid possible Vo
traffic accidents on the other. So, comparing car ensembles gi ~ felva) ¥t % faa(Xa ValXar 0ar).  (1.2)
with physical systems, it is not obvious beforehand that there o
is a direct relati_qnship between the_ acceleration of a g_iverp.lere the ternf ,(v,,), typically of the form
car and the positions and the velocities of other cars as is the
case for physical particles. In addition, the linear superposi-
tion typical in the interaction of physical particles is not self- f(v,)=
evident in the case of vehicle interaction. Ta
By contrast, on macroscopic scales the car ensembles ex-
hibit a wide class of critical and self-organization phenomenglescribes the driver tendency to move on the empty road at a
widely met in physical systemséfor a review see Refs. certain fixed speed® depending on the physical state of the
[1—4]). It should be pointed out that fish and bird swarms,foad, weather conditions, legal traffic regulations, etc. The
colonies of bacteria, pedestrians, etc. also demonstrate sinfielaxation timer, characterizes the acceleration capability of
lar cooperative motiorifor a review see Refl4] and also the given car as well as the delay in the driver control over
Refs.[5—7]). So the cooperative behavior of many-particlethe headway. The terr,,/(X,,v /X, ,v,+) describes the
systems, including social and biological ones, seems to be dfteraction of caw with cara’ (o' # «), which is due to the
a more general nature than the mechanical laws, and deterecessity for drivefe to keep a certain safe headway dis-
mining what microscopic regularities are responsible for thgance between the cars. The fortg, (X, ,v o|Xar 0 4r) IS
cooperative phenomena in the general case is a challengirmgsumed to depend directly only on the velocites v,
problem. Traffic dynamics is widely studied in this contextand the position,, X, of this car pair, and being of a
also due to the great potential for industrial applications. nonphysical nature does not meet Newton’s third law, i.e., in
the general case,, # —f,/,. Referencd11] presents and
discusses possible generalizadsaze for the dependence
*Electronic address: ialub@fpl.gpi.ru f e (X UalXar U ).
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The special cases of this model have their own names. Iti>t,} and{x»(t), t>ty} and decide which of them is more
particular, for a single-lane road, when all the cars can bereferable, for exampley;(t). The latter relation will be
ordered according to their position on the road in the cadesignated ag;(t)> x»(t). Obviously, the given relation ex-

motion direction, hibits transitivity, i.e., ify;1(t) > x»(t) andy,(t)> x5(t) then
x1(t)>x3(t). In this case we may seek a priority functional
T K2 XK1 SXK <X 1 <Xy 2 <t v e L{x} meeting the conditionC{x1}>L{x,} when and only

wheny,> x,. Finally the driver chooses the best patfp(t)
the interaction solely of the nearest neighboring earand  of his further motion maximizing the priority functional
a+1 is taken into account, i.e., i, #0 for «’=a+1  £{y}. So its extremals have to satisfy the desired micro-
and, may be,a’=a—1 only. For this case Bandetal.  scopic governing equation of individual car motion. It should
[12,13 proposed the optimal velocity model that describespe noted that the chosen path,(t) of the planned motion

the individual car motion as specifies the acceleration at the current time mortgnt
rather than the real trajector(t) of the car motion because
dv, } 9 VN 12 at the next timeé>t, the driver again plans his motion in the

dt T[ opXa+17Xa) ~Val, (1.2 same way, introducing the corrections caused by changes in

the surroundings. The same concerns the car velocity and its

where 9,,(A) is the steady-state velocighe optimal ve-  acceleration. Therefore to avoid possible misunderstanding
locity) chosen by drivers for the given headway distance we will designate the real velocity and acceleration of the
=X,.+1— X, between the cars. This model and its modifica-car asv(t) anda(t), whereas the values corresponding to
tion were successfully used to explain the properties of théhe optimal y,{(t) will be labeled by{v(t), t>t,} and
“stop-and-go” waves that develop in dense traffic on single-{w (t), t>ty}, respectively.
lane roadgsee, e.g., Ref§14-30Q). In this way the problem of specifying many independent

However, on multilane highways the behavior of traffic components of the social forces is solved by constructing the
flow becomes sufficiently complex because of the strong corpriority functional describing the driver compromise be-
relations in the car motion in different lanésr a review see  tween the will to move as fast as the physical state of the
Refs.[1-4]). In this case it is not sufficient to confine the road allows and the necessity to avoid possible traffic acci-
consideration only to the interaction between the nearesgients. So to obtain the priority functional we may apply gen-
neighboring cars and one has to specify several independeatal assumptions about driver behavior.
components of the social forcé$,, (X, v alXa v ar)}. AS
a result., the numk_)er of essential fittipg parameters entering || \ARIATIONAL PRINCIPLE FOR THE INDIVIDUAL
the social forces increases substantially. A possible way to CAR MOTION
overcome this problem is to formulate a mathematical prin-
ciple characterizing the strategy of driver behavior in terms First we should determine the collection of phase vari-
of a certain functional quantifying the objectives pursued byables characterizing the quality of a given car motion. We
drivers. Constructing this functional may be, at the phenom#ote that for the driver under consideration the neighboring
enological level, made easier by the clear physical meaningar arrangement and its evolution should be regarded as
of the driver’'s objectives. Then, using standard techniquegiven beforehand. Indeed, it cannot be directly controlled by
one will derive the required governing equations. This workhim and so has to be treated as an external condition. For-
presents our first steps towards such an approach. It shoufdulating this problem we actually assume the existence of a
be noted that the derivation of microscopic governing equacertain collection of variabletaken at the current time mo-
tions for systems with motivated behavior based on a certaiment tthat completely quantify the priority measure of the
“optimal self-organization” principle was discussed in Refs. car motion at the same time. Adopting the latter assumption,
[4,7,31-33. The main idea of this approach is the assump-we may construct the priority function@l{ x} in terms of a
tion that individuals try to minimize the interaction strength certain integral of a functiot of the phase variables with
or, in other words, to optimize their own success and torespect to time.
minimize the efforts required for this. Using conventional driver experience, we will character-

Our approach is related to the concepts of mathematicdke the individual car motion at each time momeriy its
economics, namely, to the concepts of preferences and utilitposition on the roa&(t), the velocityv(t), and the accel-
(see, e.g., Ref.34]). We suppose that at each momégnbf  erationa(t). For a multilane highway, for example, the po-
time, a driver plans his motion in a certain way in order, first,sition of a car should also bear information about the lane
to move as fast as possible and, second, to prevent traffiaccupied by the car, but this problem will be considered
accidents. In particular, in the previous pap&s], using this  elsewhere and in the present paper we confine our consider-
idea we developed a model explaining in a simple way theation to a single-lane road only. Due to this property, a car is
experimentally observed sequence of the first-order phagdistinct from a physical particle because the motion of the
transitions from the “free flow” to the jam phase through the latter is completely determined by its current position and
“synchronized mode[36—-38. Such a strategy actually im- velocity. The variableg(t), v(t), anda(t), however, exhibit
plies that a driver evaluates any possible path of his furthedifferent behavior. The coordinai€t) and the velocity (t)
motion, {x(t), t>ty}, with respect to its preferability. In of the car vary continuously, i.e., the driver cannot change
other words, a driver can compare any two pafis(t), them immediately. In contrast, the acceleratagh) may ex-
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4 X}F(I,X,Vﬂr)] d[ F{ X}&f(t,x,v,m)]
expg — o — S ——lexg - o |—5——=

hibit sharp jumps because it is the acceleration that is congz2
trolled directly by the driver without significant delay. In —

such an analysis it is quite reasonable to ignore the shoft 4 ow dt 4 v
physiological delay in the driver’s behavior to changes in the

surroundings, allowing sharp jumps in the dependex(t®. +— ex;{ — i}f(t,){,y,m—)] =0. (2.4)
Therefore, planning his further path of motion the driver re- 4 ’

gards the positiorxy:=x(tg) and the velocityvo:=v(ty) of

the car at the current moment of tiigas the initial data.
Now let us write the general form of the priority func-

tional £{x} for a trial path{x(t), t>tq} of the further mo-

By virtue of Eg. (2.3 the function F(t,x,v,w) exhibits
bounded variations, which enables us to integrate (Ed)
twice with respect to time, reducing it to the following:

tion, OF(t,x(1),v(1),w(1)
Jw(t)
E{X}:—f dtex;{— X/ O)f(t,)(,v,w), (2.2 . °°d , x(t")—x(t)
t / = | dtexp - T——

where F(t,x,v,w) is the density of the path priority mea- X&f(t'vX(t')'V(t’)-m(t')) N J%dt’det” J
sure,v:=dy/dt andw :=d*y/dt?, and the exponential cofac- an(t)) ¢ v ax(th)
tor reflects the fact that drivers can monitor the traffic flow
state and so plan the motion only inside a certain region of x)—=xw1| )
length /" in front of them. Under normal conditions this re- x| exp - Y FE x (1), v(t), w (1)

gion should enable a driver to govern his motion effectively,
for example, to decelerate in advance, avoiding a possible 29

accident. Therefore, its siz€ has to meet the inequality £qation(2.5) relates the planned acceleratiento the car
/=v 7, wherev is the characteristic vehicle velocity in the position y and velocity ». Subjecting this equation to the
current traffic flow and the time specifies the acceleration- jnjtial conditions (2.2), we can find the optimal path
deceleration capability of the given car. In what follows We yonlt|Xo,v0) depending on the initial car positiox, and
will assume this inequality to hold. Besides, in expressionelocity v,. Then differentiatingyopd(t|Xo,v0) twice with re-
(2.1 the leading minus has been chosen so as to reduce th@ect tot and setting=t,, we will get the desired relation-
problem of finding the maximum of the functiondfx} to  ship between the real current positigg=x(to) and the ve-
that of determining the minimum of integré2.1), as is the  |ocity v,=uv(to) of the car with the acceleratioa(t,) that

typical case in physical theories. The direct dependence ghe driver elects under these conditions. In other words, the
the function(t, x,v,w) on timet reflects the effect of the expression obtained in such a way, i.e.,

surroundings, i.e., the physical road state and the neighbor-

ing car arrangement, on the driver planning. 52Xopt(t|xo,vo)
According to the adopted assumption, the driver chooses a(ty)= lim ————, (2.6)
the pathyq(t) of further motion that maximizes the func- t=tp+0 at

tional L(t,y,v,w), and at the current timg, together with

other all trial pathg x(t)} meets the conditions gives us the microscopic governing equation for the indi-

vidual car motion. In addition, it should be noted that Eq.
(2.4) is of fourth order, as it must be, because a trial path is
x(to)=Xo, v(tg)=vg. (2.2 fixed in part by the position and the velocity at the initial and
terminal points. However, in the case under consideration the
) o ) characteristics of the terminal point are replaced by condi-
_BeS|_des, the present paper analyzes car motion in traffic flow;q g (2.3), allowing us to reduce the order.
i.e., it does nqt consider any means by which a fixed car can Now let us demonstrate the proposed approach analyzing
leave the_ traffic flow, fc_)r.example, to stop. So we assume that simple example.
all the trlalI paths exhibit bounded variations, i.e., there are
constant<C, , C, C,, andC,, such that IIl. THE GENERALIZED OPTIMAL VELOCITY MODEL
In constructing the priority functional we assumed that in
the steady-state traffic flow a driver prefers to move at a
certain speed,y(t,x) depending on the surroundings and
2.3 conditions given beforehand. Moreoever, we consider car
motion without acceleration to be the best way of driving.
Therefore, we adopt the following ansatz:
Then, using the standard technique, we get the governing
equation for the extremals of the priority function&{ x},
following from the conditiondL{x}=0 at x(t) = xop(t),

Cl(t—t)<x(t)<CY(t—to),

(1)<C,, |w(t)|<C,.

1 1
]—‘(t,x,v,a)zE[v—f}opt(t,x)]erzrzaz, (3.1
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where the time scale characterizes the acceleration capa-Substituting expressiof8.5) into formula (2.6), we obtain
bility of the given car. The driver monitoring the car arrange-the desired microscopic governing equation for the indi-
ment in front of him can predict the situation development,vidual car motion:

which is described in terms of the linear dependence of the

optimal velocity d,,(t,x) on timet and distance,

—1 X—Xg

t
opi(1,X) = agp{ lte——+ex——|, (3.2

dv

at (3.6

1
- ;K{v_ﬁgpt[lJr k(e oey) ]},

where we have omitted the subscript 0 in the acceleration
and velocity terms, implying that these values correspond to

0 _ . . :
where §o5=Jopto,Xo) ande;, e are constants regarded the current time moment. In particular, let the optimal veloc-

here as small parameters of the same order. In addition, t

0

h%/ Top(1,X) = Dop{A) be specified entirely by the headway

differenCEU(t)/ﬁopt— 1 is also assumed to be of the order of distanceA =Xg11— Xq between the given car and the near-

g~ €y. We have adopted the linear dependence gf(t,x)

est onea+1 in front of it. Then within the linear approxi-

on t andx because it seems quite reasonable that a drivefhation of situation development, the driver of carcan
uses the linear approximation in estimating the position ofanticipate that the headway distance will change in time as

the cars in front of him.

Substituting expression(8.1) and(3.2) into formula(2.5)
and truncating all the terms whose orders exceede,
~(v(t)/ 93— 1) we get

= Doplt’ —t
sz'(t)-Ff dt’exp{—L)
t Z

e }[v(t')—ﬁﬁpt]

/ Z 0
=—— (e +exmgy)| 1+

TV opt

(3.3

19gpt(t - to) }
- |

Multiplying Eq. (3.3 by the factor exp{ ﬁgptt//) and dif-
ferentiating the obtained result with respectttave reduce
Eq. (3.3 to the following fort>t:

2d2v dv.
T F_UTE_ v=—"0qp 1+ (e+ 08y)

(t_to)}
/T ’
(3.9

where we have introduced the parameter

0

Tﬁopt

o=—2<1,
/

A(t)=A(tg) +[va+1(tg) —v,4(te) J(t—1to).

This expression together with the dependerligg(A) en-
ables us to calculate the specific value of the constaanhd
then to rewrite formulg3.6) as

dv

dv dop(A)
dt

1
=- oK U= Fopd A) — kT A I

(3.7

where we have introduced the relative velocdy=v .4
-v, of the cara+1 with respect to the given car and
omitted the argumertt, assuming all the values to be taken
at the current moment of time.

It should be noted that the expression obtail(@d) is
similar to the phenomenological dependendg.(A,dv)
generalizing the standard optimal velocity mod&l2), the
“intelligent driver model” proposed by Treiber and Helbing
[39] (see also Refl40]).

IV. CONCLUSION

To conclude the present paper, we review its key points.
We deal with the problem of deriving microscopic equa-

the estimate of which results from the assumption adopte§ons governing the motion of individual vehicles. The cur-

about the value of". The desired solution of E¢3.4) should
meet the initial conditiong2.2) and situational conditions
(2.3, which, within ansat£3.2), convert to the requirement
that dependence(t) not exhibit exponential growth. In this
way we get

(t—tp)
T

1—exp{ — K(I_IO)D +(e¢t+ st)(t_tO)],
T T

(3.5

+ 90

opt [1-o(eitosey)]

v(t)= voex;{ —K

X

where we have introduced the constant
1 /1 241 -1
—o+ \/-0%+

2 g 4 g

K: Sl.

rently adopted approaches similar to the social force model
relate, in the spirit of Newton’s laws, the acceleration of a
given car to the position and velocities of the neighboring
cars. In order to apply such models to the analysis of traffic
dynamics, one has to specify all the essential components of
the corresponding effective forces acting between the cars.
However, when the vehicle interaction becomes sufficiently
complex, as is the case, for example, for dense traffic on
multilane highways, such an approach meets the problem of
large numbers of fitting parameters.

The present paper proposes a possible way to avoid the
aforementioned difficulty. The main idea is to describe at the
first step the strategy of the driver behavior determined by
the compromise between the driver’s will to move as fast as
possible on the given road, on one hand, and the necessity to
keep a safe headway distance and not to interfere with cars
moving in neighboring lanes, on the other hand. This as-
sumption actually implies that a driver can compare various
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ways to proceed with respect to their relative advantages ara car enters or leaves traffic flow on the given road because

choose the bestoptimal one at each time moment. This this question deserves individual investigation.

choice gives the relationship between the acceleration of the By way of example, we have considered a special case

car under consideration and the arrangement of neighborinigading to an expression relating the current acceleration of a

cars. fixed car to the headway distance between this car and the
Following the concepts of mathematical economics, weone in front of it as well as their relative velocities. The

have introduced a priority functional in order to quantify the equation obtained turns out to be similar to the “intelligent

driver choice. The extremals of this priority functional de- driver model” by Treiber and Helbing.

scribe the optimal strategy by which the driver may proceed.
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